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} . ABSTRACT
ol
s

“____ Thetheory associated with the recursion operators

of classes of incegrable nonlinear evolution equa~

tions in 2+l dimensions is summarized. [n particu-

lar the notions of symmetries, gradients of conser-

ved quantities, strong and heredicary symmetries,
Hamiltonian operators are generalized to equations |
in multidimensions. Applicacions to physically

relevant equations like the Kadomtsev-Petviashvili

equation are illustrated. Integro-differencial evo-

N lution equations like the Benjamin-Ono equation

™ are shown to be also described by this generalized -
.-

- theory.
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- | l. INTRODUCTION

- )

- . In recent years a great progress in the understanding of the
a algebraic-geometrical structure of integrable nonlinear evolution equa- .
T tions in l+l dimensions has been achieved. A central réle in the theory

- 1s played by an integro-differential operator 9, the recursion operator.

S q v possesses an algebraic-geometrical property, called hereditary l)or

Nijenhuis Z)propercy. and then it generates commuting symmetries. Moreo-~

T

oy - . « . . .
ver: i) 1ts adjoint ¢ maps gradients of conserved quantities into gra-
dients of conserved quantities; 1i) ¢ admits a symplectic-cosymplectic

factorization and then it generates constants of motion in involution

1), )

‘ . iii) 9 times the first Hamiltonian O'!
(2) 2)
9

is the second Hamiltonian

o

, then the associated evolution equations have a bi-Hamiltonian —==
W) >

nature, a fundamental property underlying integrabilicy

& _i The general theory of recursion aperators and their con-
neccion to a bi-Hamiltonian formulation in 1+l dimensions has been .
developed by Magri 2). Gel'fand and Dorfman s)aﬂd Fokas and Fuchssteiner’). : E

A+

K An analogous theory for integrable evolution equations

v
B
Camtet o

in 2+1 dimensions has nct been developed prior to our work. In parti-
cular no example of multidimensional recursion operator was known

( apart from very special cases, like the 2+1 dimensional Burgers equa-

macion 6)). Various and interesting efforts to obtain recursion opera-

7v§)

tors in 2+1 dimensions vere made for instance in ., and essentially

showed that recursion operators of a certain form do not exist. It is

interesting to notice that a similar situation was known for integro-

] tion, that can be linearized through a generalized Cole-Hopf tramsfor-
|
i
{ 3)

differential equations in 1+l dimensions ,like the Benjamin-Ono equation

Y ST ) DA
‘ .= Hq  * 2qqx. HE(x) = m _i dx'(x'~x) f(x'). (l.1)

' In this case, in order to bypass the absence of the recursion E?’
|, operator, an alternative approach, the so-called master-symmetries ap°:]
’). Such an ]

12) ———

proach, was introduced to generate commuting symmetries

10)

approach has been later successfully used 1n 2+l and in 1+l

1) i
dimensions, as well as for finite dimensional systems . pa/! ,W
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After the discov.ry") of the recursion operator ¢ and of the
12
two Hamiltonian operators Glil) and G(Z) associated with cthe Kadomtsev~-
12

Petviashvili (KP) equation

2 -1
9,79, > 649,.* 3aD q

¢ 9y (1.2)

yy’
we have developed the theory associated with these operators ' ”‘5)and
applied it to two explicit examples: the classes of evolution equations
associated with (1.2) and with the Davey-Stewardson equation

. 1 2 2 2

i, 7(ara fay ) a - [afh), u-atu = 20a €. (1.3)
In particular,in Ref.l4, i) we present a systematic derivation

of the recursion operator le from the underlying spectral problem,

ii) we show that ¢ generates ( what we call ) extended symmetries

(m) . L 12 . (m)
o] and its adjoint generates extended gradients y of conserved
12 (

12
quantities, iii) we show that <Jm)(q1,q2)- 0 are Backlund Transforma-
12
tions (BT) and c(m)§ c(mﬁ and vy (m)f ~y(m1 are, respectively,
1! 12 Y2 Yy 1t te 2" Y .
commuting symmetries and gradiencs of conserved quantities in involution

_for the associated class of equations. In order to deal with the "extended"

objects of this theory, i) we introduce a novel (operator) directional
derivacive, ii) we deal with a Lie algebra of operators, as opposed to
a Lie algebra of functions. In Ref.l5, exploiting the richness of this
operator Lie algebra, i) we generate, via ¢ , time-dependent symme-
tries, ii) we use an isomorphism between Liel:nd Poisson brackets to
show that all these symmetries correspond to extended gradients, and
hence give rise to conserved quantities, iii) we show that the already
knowa master-symmetries are connected to these symmetries, and, since
thay correspond to gradients, they camnot be used to generate ¢ ;

iv) ve find a non-gradient master-symmetry that can be used to ;inera:e
01: » V) we finally motivate and verify some of the aspects of this
generalized theory by establishing that equations in 2+1 dimensions are

exact reductions of certain nonlocal evolution equations, whose algebrac

properties are rather straightforward.

In this note we assentially present a summary of the results

—_—— -
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contained 1n , referring to these papers for proofs and details.

We dadditionally exhibit the recursion operator of the Benjamin~Ono (BO)

class, showing that integro-differential equations in l+| dimensions fit

into this generalized theory 16)

2. ALGEBRAIC PROPERTIES IN 2+1 DIMENSIONS
We consider evolution equations of the form

q.* K(q).
where q is an element of some space S of functions on the plane vanishing
rapidly for x| ,ly|] = @ , and K is some differentiable map on this space
( for convenience independent of x,y,t ). We use the KP equation (1.2)

as an 1llustrative example.

2.1 Representations Of Integrable Equacions In 2+l Dimensions

Integrable equations in 2+i dimensions belong to some hierarchy

{ generated by a recursion operator ? ); fundamental in our theory is
12 -

to write these equations in the form

. . (n) . (n)
= 9 - 4 - .
qlt g dyzé 2¢12K12 . -n & dY26 KIZ - Kll' (2 l)
where ¢ = ‘(y g) denotes the Dirac delta function, qi- q(x.yi,:),
i = 1.2, \n) (n (ql.q,) € 5 and . K;z are operator valued functions

- i

oan S . Through this paper @ and n are non-negative integers.

For example the recursion operator associated with the KP class is
1. . -1 -1 - -1 = . -
R P 1P LI TPCIRC TP R PP FRAC PR IC PR PO C R
where D = 3/3x. D.l .E.dx and D - a/a , 1= 1,2. This operator generates
two classes of evolution equa:xons correspondxng to two different star- _

ting operators Ki,, given by

- -1 -
127 arr 857 DAyt a0 qp,- (2.3

Then the KP equatien is obtained from (2.1) for n = 1, BI 1/2 and K 12,

wnile the first two non trivial equations of the second class ( KIZ le)

BT e

e VY T R PR
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::r 9 7 94, n - L, Bl' 1/4, , (2.4a)

N . , -1 2,.-2 a7 Q= ,

::- q, a(qxxy* oqqy* 2qu qy* a™D qyyy)’ n=2, 3, 1/8. (2.4b)

" The recursion operator % enjoys a simple commutator re-
1:

::\‘ lation with hlZ- h(yl—yz):

'~ b ] ’ .

‘e = - RQh' ' » s 2.
2 [+, Shige Rpp® 9hpp 3y (2.3)
W which implies thac & K™ & ¢ R% -1 = § 3%(Me™ %5 RY..1, where
- 2 1 12 12 "1z 12 12 =0~ X1 T2 12

. Glzé 3 5l2/ay1. Moreover the commutation relation of Ry,with LIPS

‘:',- implies that 6‘ K(?; can be written in the following alternative
\ ’ : e ——————————

\j form
n -
5 k(Wa T oo st (2.6)
12 12 gog @i 12 7,
\'f. For the two classes of equations associated with the KP equa-
‘: tion we have that
"’
.‘-’ - - i T r - - ? ! d -
o 8 = =4a, [(§,.0,]°0, [, h, ] Dhi,. 3 = 8/2,
B a* %), if RO~ 8,
\' ®s léi % issl-s H (2.7)
Y - it 34 o~ .
e 23773 (ms), LE R}, 9.
AoV s70
: ! 2.2 A New Directional Derivative
i In ref.s 14,15 we present a systematic approach to derive
:: recursion operators and classes of integrable 2+l dimensional equa-
-‘;: tions in the form (2.1) from the underlying spectral problems. This de-
g . . . . .
- rivation is based on the use of integral representations of operators
) depending on q and 3/3 . In the KP case, for example, the basic operator
Q- §=q+ (2.8)
L,
K- appearing in the underlying spectral problem
.
::__ ls represented by
v

S e Sy
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§,f,,= (q,* GDL)f

112 1 (2.10a)

= fdy.q, £+,
12 R 3713732
where g = glx,y. .yJ ), i,j = 1,2,3.
The above mapping between an operator and its kernel induces
a mapping between derivatives:

-
4, 8 £,5% Jdy 8y7fq9,
1y ‘812 ] 127 3813732

where &l [312 }denotes the directional d-derivative of the operator

(2.10b)

valued function dl in the direction 8y5° Using an appropriate bilinear

form ( see (4.3a) ), it is possible to obtain the d-derivative of the
. . - @

afjoxnt q, q," aD

T eg tie
92" 9= 9

, of Ql and, consequently, of the basic operators

- +
a7y (81 JEy; = [dv5(8)3f55" £1383))- (2.1
Since 9 and K° are polynomials in q{z. their directional derivact:..es
12
¢ rglzl and K r gl" are well defined.

12
d
The d gerxvatxve is a novel aspect of the theory in 2+1

dimensions; its connection with the usual Fréchet derivative ( hereafter

indicated by the subscripc f ) is given by the following projective

formula
Kig 15,810 17 %y o 12k (o] + %, (8] 21D
d £ L d1 q2
where KIZ 1s an arbitrary function in S and K12 denotes the Fréchet de-
rivative of K , with respect to q,, i.e. 94

~ 3 . L oig: a s
Kqu_[sii J E Klz(qio Cgii'qj)le -0’ i,] 1,2; L*j. (2.13)

1
Operator valued functions on § for which d-derivatives are defined

are called admissible.

2.3 The Lie Algebra Of The Starting Symmetries
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The scarting symmetries KL’ are written as Kiz' ,

ﬂ? where K;, are admissible operators. Crucial aspect of this theory is

x? that the operators Kl;' acting on suicable functions le belonging to

, «

s the Ker of the first Hamiltonian operator O(X)(l e. such that G(l) 12-0).
12

form a Lie algebra. Then, with respect to the 1+l dimensional case cha-
racterized by a Lie algebra of functions, equations in 2+l dimensions

present a richer algebraic structure, characterized by a Lie algebra
of operators.

For the equations associated with the KP equation, leis
an arbitrary function independent of x, i.e.
H," H(Vx'yz)' (2.14)

and the Lie algebra of the starting operators Sl, and HIZ s given by

(1) 20y L gz iq zD (), . g M
RIPLITITIL IPL M Bty PP » RPLIPE
(0 2y L (3)
LPLPRPLF: Ia RSIPLITE (2-15)
in terms of the Lie brackets |.] 4 L e defined by
(1) @)y, (L) (2) . (2) (1)
X5+ K5 d, KIZd 5] [K ]. (2.16a)
e CaD )y ., (1) (2) _ (2) (n, .,
Hig 7 Lty B i f dyy(fy iy - BTy T) . (2.160)
1. SYMMETRIES AND HEREDITARY SYMMETRIES
3.1 The Notion Of Extended Symmetries, Connection To Symmetries

And Biacklund Transformations

The recurs;on operator o generates a sequence of functions

(m)_ (m) ¢
alz (ql.qz) < S defined by

,.::.cv (m) []
" RY-1. .
o, ” 12 (3.1)
_These functions live in the extended space S and, in order to give
them a characterization and establish their cunnection to the integra-

ble evolution equation

12 11’

q, = /fdy,5 K =K (3.2)
t R e l«
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Theorem 3.1

S e v

the following definition is introduced.

Definrtion 3.1

A

o
The function Ol’e S is called extended svmmetry of equation (3.2) iff

’. -
cuf [Kl N (6121(12)d£0uJ ) ’ (3.3)

Remark 3.1

3
¥
i
f

1) Definition (3.3) makes sense only if ( 61~K12)d exists; for equations

- ! (n)_ ,(n) . .
q RJ dy, 612K12 Ky, generated by ‘912 , (éuKlz)d is well defined
an& reads
(n), . n g - ntoe oL ,
( 61512 )d ( 612°12 K12 1)d léobn,l ( 0Lz KIZ 6lz)d' (3.4

(n)
12

where equation (2.6) is clearly used to write 512K in admissible fomm.
Lf, for example, K;zt 812 and n=0 and 1, we have

@

(6”1(12 )d' 2D, (3.5a)
(5 kM 2 2p3e6D(q.+q.0-3 2 (0" H(q, -9, ))*6a(q,~q,)D (D, +D,)+
12712 74 979, 1 2 1 %2 172
-1 2 ny
60D (D +D,)). (3.5b)

i1) The projective property (2.12) implies thatclz is an extended sym-

metry of (3.2) iff G“ commutes with GX’K 2 namely iff

s -2 et 1 o ;.«.\wu.'\“.“‘. NmatbdmaSar

z 1
(o 6§ Ky, 0. ' (3.6)
12’ Ti1z212-°d
1i1) In the above definition we assume that 012 does not explicitely

YTV ey

depend on t, otherwise o, f[l(] should be replaced by Bcufat #OH_[ l(].
t
The usefulness of extended symmetries follows from the fact

that they give rise to symmetries and Baklund transformations. Precisely

A o, htarée

ve have the following

If Glzis an extended symmetry of equation (3.2), then

i) 011-(312lY2'Y1 is a symmetry of equation (3.2), namely

c“f[KuI - KILE [:a”:[ : (3.74)

11) che equation

0., = 9(3.q,) =0 (3.7v)

is a pBacklund transformation for (3.2) where, of course, q1 and q, are

PO U - : A AT IO A Y A oS At Ao 7o Wy i
B S e D RO 2 S A Oy R A A M o e e D A - e O
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are now viewed as two different solutions of (3.2).

£ 3.2 Strong And Hereditary Symmectries

The introduction of the d-derivative allows a natural genera-
lization of the notions of strong and hereditary symmetries in 2+l di-
mensions; precisely we have the following

Definition 3.2

i) The admissible operator valued function & is a strong symmetry

for AIZ 1f£

°;zdLA12 ]+ [blz. Alzd 1= o. (3.8)
ii) The admissible operator valued function 912 1s called hereditary

symmetry Lff

[@:lflzl g ,m % 4 [512 ]812 is symmetric w.r.c.f

(3.9)
12 124

12g 12°812°

Remark 3.2

i) Equation (3.8) makes sense Lf the d-derivative of A,.exists;if A

12
12 12" A Hpp)
- - - .
12 - 312 L';le‘ Since a
linear combination of admissib?e functions is admissible, the

equation (2.6) impiies that K;S) ls an admissible function.
R

lzis
generated by an admissible operator 312 on H ( A

then AIZ ils admissible and A

ii) If Alz- SXZKIZ' then equation (3.8) reads
» kJ+ [ (8 K., 1 =0, (3.10)
125[ L 12 12 127d 4 »
and we say that ¢ 1s a strong symmetry of the evolution equa-
12
tion (3.2). In this case § maps extended symmetries of (3.2)
1

2
to extended symmetries of (3.2).

e As for equations in l+l, hereditary operators generate infini-

taly many commuting symmetries; we have precisely the following
Theorem 3.2 - — T

If the hereditary operator 9 is a strong symmetry of the
12

starting symmetry KTZHIZ’ and if the starting operator K;z satisfiaes
the following condition

P

P T I S N I T S ) - S \1-“.\\\\‘-\'\’\“--‘\'.’\‘1\‘\
'Vgﬁét;fgf‘a;z;g;¢;e;¢\»~¢ 'aﬁmﬁr\:‘e;¢$x;a~a W, N Ny Al TSR A A W s
B O N A P R ) a
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(- ¢

e H o (1) g0,(2) (1) (2)

e Voo (R RGHGT 47 0 for  [H)y". M3l =0, (3.11)
29 .

’;ﬁi l‘ then ofn) - ¢TZK{2-1 are extended symmetries of every evolution equation

o X

S

A (2.1).

Corollary 3.1

&

It ¢ generates two classes of evolution equations correspon-
12

ding to two starting operators R°

given by ¥, , and le, and if le

-
x
»
"
'] " 5_r
b e iy Loy f

:: and 312 satisfy a Lie algebra oflihe type (2.15,16), then @lzm 312.1
ZI and 01: alf 1 are extended symmetries of both classes of evolution
A equations (2.1).
.fai 5‘ It turns out that the recursion operator (2.2) is hereditary
,:;: 8 | and is a strong symmetry of the starting symmetries (2.3), then it fol-
;; lows that cf?)- Olj K;{ 1 ( for Kfz- le and/or 312 ) are extended
A symmetries of each equation of the KP classes, and Theorem 3.1 implies
izis fl that ofT) are symmetries and cft)- g (m)(ql.qz) = 0 are BT of each
::E“ I member of the two hierarchies. _;Eg? i
Padan 1 e
-~ ‘ 3.3 Isospectral Problems Yield Hereditary Symmetries )
3 T .
“;Q ‘ The previous section illustraces the importance of here-
f#k ditary symmetries. For equations in l+l and in 2+l dimensions isospe- ’
‘:?\ H ctral problems yield hereditary operators: )
::E: r Proposition 3.1 i
::'{? ‘ Let 4
QA
o | & = U@ v (3.12) {
:ég;‘;,‘db be an isospectral two dimensicnal problem, where § is an operator de- 1
i¥ ‘ pending on q(x,y) and 3 /3 y,and A is an eigenvalue. Assume that (G A)12. )
fﬁﬁ . the extended gradient of X ( see (4.2)),satisfies s
%, ! RS RTGVICADIvY (3.19) {
,E&E Then if o:z = ¥l: has a complete set of eigenfunctioms, it is heredi- 1
~ | cary.
e

For example the isospectral problem

”or iy

. . . - , . - a . "
2, We Mo Wy Wy OO0 s TNy Ty 3 ML N AT R A T e T W N R N A A I MM I X O M3
*'J"l""?l.f’l.vfl...”!"‘!"'t.‘.'q.?l-'.lo ( WONCA N ‘0"‘"-" -“:’.!:!.II 5 .‘s‘. ,h..,la .""I.’.ln'!‘n".'-‘.'\.,"".'~"‘."'-.‘h‘hp‘?'o‘!‘n.}‘"i‘,‘r. (R R PR MO M S B
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>
ol v _+*qv = Av (3.14)
| ) xx 3 )
CON associated with the KP classes implies that
\'_ v
- (G )y, v v
‘:-_ A 12 lvzn (3.15)
- where v_ is a solution of LM (q - aa/ay)v‘- Av' . Since , defined
: 12
L by (2.2), satisfies
MRS
e N * +
\:._ ? v v,y" ékv‘v:, (3.16)
L S N b . -
o it follows that ¢ 1s hereditary.
N v
- 4. HAMILTONIAN FORMALISM
Ny L. .
;f 4.1 Bilinear Forms, Gradients Of Conserved Quantities
N* Integrable evolution equations in 2+l dimensions posses
~ C . .
: _5 infinitely many constants of motion of the form
®
2i; 1 = ¢r ﬁZdXdyloll- tr £3dxdyldyzglzol: . (4.1)
D where 5 = Q(ql,qz) (the trace operation is obviously omitted if q
SN 12
o is a scalar).
’-
&" As in l+l dimensions, it is more convenient to deal with the
»:; gradients of conserved quantities; in this case the double represen-
K
::? tation (4.1) of a functional I allows the introduction of the extended
:x§ gradient gradlzl and of the gradient grad I of I. defined by
B
! - 5 1 = 4.2
) Lylea) tr ;3dxdv dy,3 . x;d[glzl » < grad,l. g,.> . (4.23)
o Leigy, ]= tr ,dedylo [ 8, 1 * (grad L. g, ). (4.2b)
v R
- where
3 £, > % tr f.dxdy,d f (4.3a)
® € 8rpr frp > 7 0T Lydxdy dyagy frg 33
..-::. ' 4.
:\:-l' are the proper symmetric bilinear forms coupling arbitrary elements
e ~ g -~ 4 . rd -
. z e = €
o 8, ¢ S, f12 S and glLe. S, E“ S respectively ( S and S  are
' obviously the duals of S and S ).
"
1;: Lf L12 and L denocte the ad101nts of the operator valued
o functions le and L on S and S with respect to the bilinear forms (4.3a)
'f‘ and (4.3b) respectively, namely if
%
o
!
a
. —_— ‘
v,

o'y ¥ 0
NSRRI

i &Y 879 8
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sy

Liagrar B2 > 7 <8ppe Lpafyp > s (4.4a)

+* ¢ é

then one can prove the following

Proposition 4.1

1) v ~and vy are extended gradient and gradient functions respe-
D2 11
ctively, 1ff vy ol =y and vy - Y
. . t3d 12 4 ) 1g n f
1) If v Ls an extended gradient, then y 1s a gradient corres-
12 11

ponding to the same potential, namely if vy = grad then
12

120
Y = grad I.

11

[f a functional I is conserved with respect to the evolution equa-

tion (3.2), this corresponds to the mathematical notion of conserved
covarianc.

’

Definition .t

The function y 1s an extended conserved covariant of (3.2) iff
12

T« : e 1 .
Y Ko+ ( °12K12)dt“'1‘«' 0. (4.53)

2. 4
£

Then we have the following

Proposition 4.2

i) If v is an extended conserved covariant of (3.2),y is a con-
12 11
servad covariant of (3.2), namely
*
K. T T o= o0. 4.
Y“ ‘-Kllj‘ Kll LY“J 0 (4.6)

1i) If che functionmal I is a conserved quantity of (3.2), then

y = gradlzl is an extended conserved covariant of (3.2).

12

Conversely, if y 1s an extended conserved covariant of (3.2)
and it is the exéénded gradient of a functional I, theng I is
a constant of motion for (3.2).

As an illustration of the notions presented in this section,

we have that the functionals Ij defined by

! e
.o — 0o d d =0,1, 4.7
IS TS AL AL P R SO S -7
where

() . -1, ] o ° 4
Y, D @lz KlZ 1, KIZ le and HIZ' (4.8)

VT BTN Wl N b as e e R |
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are conscants of motion of the KP hierarchies, corresponding tc the
extended gradients of conserved quantities
(i, -pledige. o
Y ; gradlzlj D 012 12 l, j=o,l. (4.9)
EXMar gt then
Moreover qu qu'
¥ 2 -1+ . -1 - -1 -
912 D + D quD + 2 + D quD q;5- (64.10)
4.2 Bi-Hamiltonian Structures
The existence of a recursion operator for 2+1 dimensional
systems allows a characterization of their bi-Hamiltonian nature. The
"extended nacture” of the operators we are dealing with, leads to a defini-
tion of Hamiltonian system in an ""extended sense'.
Definition 4.2
An equation (3.2) is of a Hamiltonian form ( or is a Hamiltonian
svstem ) if it can be written as
q, = fdy, 6 0 vy , (4.11)
Loog 2 a2z
where vy 1s an extended gradient function of the form v =v -1
12 12 12
and 3 is a Hamiltonian operator, i.e.
i) 2% a-0 (6.12a)
12 12
ii) 2  satisfies the Jacobi identity w.r.t. the bracket
12
) A ¢ . 4.
(ay2:0000050 * <apy € [0, byp] oy 2 (4.125)
The associated Poisson bracket of two functionals I(l) and I(z)is given
by
e 1@y o cgraa 1Y, 9 grad. 15 . (4.13)
] (1)- D and 6(2)- % D, where ¢ is defined in (2.2), are exam-
12 1e 12 12 . (0) -1
ples of Hamiltonian operators. Then, since vy =D 812-1 and
- 12
Y(l)' D lb 312-1 are extended gradients, the KP equation has a dou-
12 12
ble Hamiltonian structure { is a bi-Hamiltonian system ):
1
ay = fay,s o L pey s (2000 (6.16)
t R 12 12 12 R 12712 12
-2
N
Ay
o
"
-
f\
"-

Y
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As in l+! dimensions, the existence of a compatible pair of
Hamiltonian operators plays a fundamental rdle in the theory, emphasized
by the following Theorem
Theorem 4.1 :

Let G(l) . W0 (2)

12 12 (l)
values of v . Assume that O

be a Hamiltonian operator for all constant
is invertible. Define ¢ = Q (2)(0(1))-}
12 12 12 .

$° &« (0 (1)) 8% . Assume that the operacor Ql is a strong symmetry for
2

12 12 12"
the starting symmetry KIZ 12 that satisfies(3.11); further assume that
g° H,, is an extended gradient function. Then
12
i) Equations (2.1) are bi-Hamiltonian systems.
i1) ¢ is hereditary. - .
. g@m?l o (m) % .m0 =,
iii) = ¢ land v "= (& 7 ) ¥ ":1 are extended symmetriaes
12 12 12 12 12 12

and extended gradients of conserved quantities respectively of

equations (2.1).

g (@ (m)

iv) and { are symmetries and gradients of conserved quantities
i1

ll
in involution for equatioas (2.1), namely
(m) (n) 1 (n) r, (m)
[K ] - Kllf K u] , (4.15a)
2
( 1(“), :‘“)) s @ @ L0 20 or 0 hi1sh)
. 12 12 12 Y1, 12 12 12
Y(J) = gradl,I(J). (4.15¢)
12 <
v) K{?)- (m)(ql,q,) = 0 are auto-BT for equations (2.1).
Remark 4.1
3 2 -
If ¢ =0 (“)( O(l)) % where Q (1) 4nd 0 (2) are skew-symmetric,
(1}2 12(1) ‘12 12 12 (1)
then ¢ O = Q0 ¢ ( the operators ¢ and 9 are well
12 12 12 12 12 12
coupled ).

The hypothesis of Theorem 4.1 are satisfied by the Hamiltonian
Q9] (2)

operators 0 ', O
t2 12

KP classes; then they enjoy the propetries i)-v).

and by the starting operators le and le of the

5. OTHER ASPECTS OF THE THEORY

brad el Be. seeta .o a. .

pon
'd&.{

» .‘ s 20 < OB, . aw X e - 0 , .
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5.1 Time Dependent Symmetries, Connection To Master-Symmetries
In order to investigate the propeties of time independent com-

muting symmetries of the integrable evolution equations (2.1), one

uses only special choices of H ( given by le- l and 61 ) for which
1

12 .
the Lie algebra of the starcing symmetries is abelian. More general
choices of 812 make the Lie algebra of the starting symmetries non-abe-
lian and give rise to time dependent extended symmetries.
A time dependent symmetry
r .
o = ¢ o W) (5.1)
12 j.o 12
of equation (3.2) must satisfy the following equations

S) I GG E D -

12 J 12 2, KIZa 4’ joly...r, (5.2a)
25 k. =0 (5.2b)
Lg%y 12404 ) .

This implies that constructing a symmetry of order r in time is equiva-
lent to finding a function £(0) with the property that its r+1%% Lie
cormutator Wwith Slzklz is ze;é. Considering the KP class and using the
structure of the Lie algedbra (2.15,16) and equation (2.6), it is possi-
ble to showtmt-dependent symmetries of order r are generated through
equations (5.2) starting with

-(0) T(:n.r) LTS g(e)

“12 e ERSTES ¥ 0 VA (5.3
vhere K;; = le and/or Sl,. and Hiz) 1s defined by
RN (5.4)

or, more gencrally, by any homogeneous polynomial of degree r in yland

Yy For example 5 given by (5.1), with
12
()] @ g0 ,(r)

Zl‘ - 01‘ HIZHIZ . . (5.5a)

J i

(i), Pa . (msjn- £(2s,+1)) (v= 3, (2s,+1)

L3 RS B P P TRCIAIR PN

preee9:m0

N (-1 i 4 )

v(r,j,s) 4 =T ( Ala(r- y (25101)))( z
e il PR

]
r!

Y L (5.5¢)

b Y
n...sl

L (r- 7 (25,+1))
i=1

SRS AP PRV VI § AT DRSOV eV,
ST sy =
- > . v
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5(a)={l' a 20, pn+ {(n-l)/Z. n odd bq L i (-ta )l(?) ' (5.5d)

lo, a <0 , (n=2)/2, n even

ts a time dependent extended symmetry of order r of equation (2.l)n.cor-

. 2 . . .
responding to K17 = ﬁl,. The discovery of the existence of a hereditary
operator ¥ , together with cthe structure of the Lie algebra of the

starcing symmetries, allows a simple and elegant characterization of
the 2+l dimensional master-symmetries . Here we briefly remark that

r(m’r)é Jdy, & r(m’r) (5.6)
11 R 1z 12
12}

are the so-called master-symmectries of degree r of KP

5.2 Gradient And Non-Gradient Master-Symmetries

Using an isomorphism between Lie and Poisson brackets and

the Lie aigebra of the starting symmetries K 1,. it 1s easy to pro-

ve that ( ”(L)) KI’“I’ are extended gradxencs. This implies chat

-~ -

the excended symmetries associated with them give rise to conserved

quantities. For c¢xample, the t-depcndent symmetry

A f?’(v *vy) v tl2a (m’l?x (5.7)
i ) -1
= 7 -
ot the KP equation . -(qxxx~ 6qq Ja D qy ) corresponds to the

. . -1
extended gradient D 35 , then {t gives rise to the t-dependent
L -

conserved quantity

- 1 ~lg(m+l) .
L G @ M Yy Lyt
P 238 o7l . (5.8)
Y™
. . (m,r)
Since the master-symmetries T are related to these gra-
dients, they cannot be used to generate 0_ . Nevertheless non-gradient
12

master-symmectries of 2+l dimensional equations exist, for example

.
TL,#Q s ls a non-gradient master-symmetry of the KP classes, sati-
< 1z e

sfying the following equation

-0 ° a+] -]
l: E . = b ] R . 19
i 12 12 l' 12 ]d n L. (5 )

.
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wvhere bn- 4o and 2(In<l), if Ri = SL, and 317 respectively.

Since (Q(L))-LT12 ls not a gradient function, TIZ can be

L2 -
used Co generate & , exactly as in l+l dimensions, through the for-
oula )
82 =1, ~aMr (4L (5.10)
- ‘d 12 4 [ 3.

The existence of the IL’ master-symmetry finally implies a
simple derivacion of the equation
P

L= L ,rzdxdyly(“’”. (5.11)
arl R Lt

wvhere Ia is the potencial of ';n) ( *}n)- grad In ). and~y(J)-
it I !

- (353 FRa 1.
12 1

ZL-

6. THE BENJAMIN-ONO CLASS

The remarkable connections ( algebraic and analyctical)
between the K? and the 30 equations are also confirmed by the fact thac,
alchough the 30 equation is 2 l+l dimensional system, iCs recursion
operator lives in an extended space. In fact it is possible to show that

the 30 class can be represented in the following wav?® )

. [« i
ql’an“ad"zﬂ ¢ qpyt- (6.1)
c -~ -

where § = 3 (x,-x,). The hereditary operator 3 is defined by
12 L - i

-
L e

y = 92" quzﬂ. qiz' ql-qz'x(Dl.Dz).

e

q;= q(xi.:), Di-alﬂxi. i=1,2, (6.2)

and cthe operator i, whose action is defined on functions f .= E(xl.x

12 2
of the cype

127 317 B2" Sp0 Hiepa® Hyopy. (6.3)

is given by
Hflz. Hlal’ szz’ HLCIZ' (6.4)

where HL' i=1,2, 1s the Hilbert transform with respect to the variable

j

e

- s
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s

L NN Y

: W

'1 . ' _ -L ' : .
Higij- L ,;dx.k(xi xi) g(xi,xj), L#3. 6.5)

P U R SR P

o

It is possible to show that all the extended symmetries cfj)
2

generated by 01
2

(1), 4 3
. ¢
ze 12012

1 (6.6)

e e e

are functions of the type (6.3), then formula (6.1) is well defined.

The BO equation (1.1) corresponds to n=2 and 8,=(4i) '. One can show that
the algebraic properties of the BO class (6.l) are described by the

generalized theory summarized in this paper.
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